formed in this fashion. A C_{2v} structure was found to be preferred for the (CH₃)SiF₄⁻ anion, while no structural information could be extracted for the (CH₃)₂SiF₃⁻ anion.

Acknowledgment. The authors gratefully acknowledge support of this research by the National Science Foundation under Grant No. CHE81-00119.

Registry No. $(CH_3)SiF_4^-$, 44244-53-3; $(CH_3)_2SiF_3^-$, 51108-60-2; $(CH_3)SiF_3$, 373-74-0; $(CH_3)_2SiF_2$, 353-66-2; CsF, 13400-13-0.

Contribution from the National Chemical Research Laboratory, Pretoria, 0001, Republic of South Africa, and the Institute for Physical Chemistry, University of Frankfurt, D-6000 Frankfurt am Main 1, West Germany

Autocatalysis: Yet Another Mechanism for Spontaneous Cis-Trans Isomerization of Square-Planar Platinum(II) Complexes

Wynand J. Louw* and Rudi van Eldik

Received June 16, 1980

A detailed knowledge of the mechanisms and factors influencing cis-trans isomerization of square-planar and octahedral complexes is of vital importance in homogeneous catalysis since critical steps such as oxidative addition, reductive elimination, and insertion are mostly stereospecific reactions.¹ In by far the majority of cases the latter two steps proceed only if the relevant molecules are in the cis position.¹ Thus, groups which are mutually trans to each other would have to rearrange before they can undergo insertion or reductive elimination.

Octahedral complexes isomerize by a mechanism usually containing a trigonal bipyramid-octahedral equilibrium.² In contrast, square-planar systems isomerize via quite a number of different mechanisms. Some of these reactions may be catalyzed by ligands such as phosphines, arsines, stibines, and amines through either a consecutive displacement or a pseudorotation mechanism, depending on the polarity of the solvent and the softness of the coordinated ligands.³

The uncatalyzed cis-trans isomerization of $PtRXL_2$ systems (R = alkyl, aryl, substituted aryl; X = halide; L = phosphine) was proposed to proceed through a three-coordinate intermediate, but this intermediate was later shown to be a four-coordinate solvated species.⁴ The actual isomerization step is still not clear. On the other hand the spontaneous

$$cis-PtX_2L_2 \rightleftharpoons trans-PtX_2L_2$$
 (1)

(X = halide, L = phosphine) isomerization rate was found to increase as the polarity and thus the coordinating ability of the solvent decreases.³ Since noncoordinating solvents cannot form solvated intermediates or act as catalysts in a consecutive displacement or pseudorotation mechanism, it appeared to us that yet another mechanism was operative in this system. We have now investigated reaction 1 (X = I; L = PMe₂Ph, PEt₃; solvent = dimethylformamide, dimethyl sulfoxide, acetonitrile, benzene, toluene) kinetically and have found evidence for an autocatalytic mechanism.

Experimental Section

Complexes and Reagents. cis- and trans-PtI₂L₂³ (L = PEt₃, PMe₂Ph) and [(cod)Ir(phen)]ClO₄⁵ (cod = 1,5-cyclooctadiene, phen = phenanthroline) were prepared according to literature methods. All reagents and solvents were of AR grade.

Table I. Product and Absorption Maxima (nm) for Substrate and Product for the Cis-Trans Isomerization of PtI_2L_2 in Different Solvents

	L		
	PEt ₃	PMe ₂ Ph	
DMF product	two consecutive reactions	20% trans-80% cis eq ^b	
λ_{\max} (substrate)	cis 355; trans 335, 284	cis 353; trans 331, 288	
λ _{max} (product) λ _{diff} ^a	290	352 290	
benzene product λ _{max} (substrate)	100% trans cis 261; trans 337, 285	100% trans cis; trans 332, 292	
λ _{max} (product) λ _{diff}	337, 285 290	332, 292 300	
toluene product λ _{max} (substrate)	100% trans cis; trans 335	100% trans cis 363; trans 331, 292	
λ _{max} (product) λ _{diff}	335 300	331, 292 300	
CH ₃ CN product	90% trans-10% cis eq	10% trans-90% cis eq	
λ_{max} (substrate)	cis 352; trans 334, 283	cis 352; trans 332, 288	
λ _{max} (product) ^λ diff	334, 280 284	348 290	
Me ₂ SO product	80% trans-20% cis eq	20% trans-80% cis eq	
λ_{max} (substrate)	cis 352; trans 334, 284	cis 351; trans 331, 288	
λ _{max} (product) λ _{diff}	340, 283 284	350, 287 290	

^a Wavelength of maximum difference in absorbance between substrate and product. ^b eq = equilibrium.

Figure 1. log $(A_r - A_e)$ vs. time for reaction 1 $(trans-PtI_2(PMe_2Ph)_2$ substrate) in DMF at 50 °C: (a) under an N₂ atmosphere, $k_{obsd} = 5.78 \times 10^{-3} \text{ s}^{-1}$; (b) under an O₂ atmosphere, $k_{obsd} = 2.89 \times 10^{-3} \text{ s}^{-1}$; (c) under an O₂ atmosphere and in the presence of 2.1 × 10⁻⁴ M n-Bu₄NI, $k_{obsd} = 3.61 \times 10^{-3} \text{ s}^{-1}$; (d) under an N₂ atmosphere and in the presence of 0.2 × 10⁻⁴ M [(cod)Ir(phen)]⁺, $k_{obsd} = 1.31 \times 10^{-3} \text{ s}^{-1}$.

Kinetics. (cod)Ir(phen)⁺ is dioxygen sensitive, and reactions involving this complex were always executed under nitrogen atmosphere.

ed; Wiley: New York, 1967. (3) Louw, W. J. Inorg. Chem. 1977, 16, 2147 and references therein.

^{*} To whom correspondence should be addressed at the National Chemical Research Laboratory, Pretoria.

 ⁽a) Åkermark, B.; Ljungqvist, A. J. Organomet. Chem. 1979, 182, 47, 59. (b) Milstein D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4981.
 (c) Deeming, A. J. Int. Rev. Sci.: Inorg. Chem., Ser. Two 1974, 9, 271.
 (d) Deeming A. J. Int. Rev. Sci. Inorg. Chem. Sar. Org. 1972, 9, 117.

⁽d) Deeming, A. J. Int. Rev. Sci.: Inorg. Chem., Ser. One 1972, 9, 117.
2) Basolo, F.; Pearson, R. G. "Mechanisms of Inorganic Reactions", 2nd ed: Wiley: New York, 1967.

Table II. Effect of [Complex], $[(cod)Ir(phen)]^*$, $[I^-]$, and Atmosphere (atm) on the Observed Rate Constants for the Cis-Trans Isomerization of PtI₂(PMe₂Ph)₂ at 50 °C in DMF

substrate isomer atm	10 ⁻⁴ [complex], M	10 ⁻⁴ [(cod)- Ir(phen)] ⁺ , M	10⁻⁴[I⁻], M	$10^{-3}k_{obsd}$
trans 0	1 1	0	0	2.98
	1.1	õ	Õ	4 1 3
	2.5	0	Õ	2 98
	2.5	õ	0	4 13
	2.8	0	0	2 80
N	0.35	0	0	579
112	0.55	0	0	5.76
	0.5	0	0	5.25
	2.2	0	0	5 79
	2.5	0	0	5.76
	5.06	0	0	5.23
	5.00	0	0	5 79
	2.15	0.2	0	1 210
	2.2	1.0	0	0.240
0	2.4	1.0	21	3.610
	2.0	0	2.1	3.01
O_2	2.5	0	0	3.40
	2.5	0	0	2.20
N	4.0	0	0	2.03
12	1.5	0	0	J.01 4 44
	1.5	0	0	4.44
	1.0	0	0	5 77
	0.75	0.25	Ő	1 110
	27	0.23	0	1.60
	2.7	0.2	0	0 430
	2.5	0.8	43	5 790
	4.2	0	18	5.76 6.30¢
	1.2	0	27	5.78 ^c

^a Calculated from the linear part of the plots in Figure 1. ^b Induction period lengthens. ^c No effect on induction period.

Dioxygen-free solutions were obtained by bubbling nitrogen through the solvent for approximately 2 h, and reaction solutions were prepared in a glovebag under a nitrogen atmosphere. The kinetics were followed on a Cary 15 spectrophotometer at the wavelengths shown in Table I as λ_{diff} .

Results and Discussion

Table I shows the end products and Uv-vis data for equilibrium 1 (X = I; L = PMe₂Ph, PEt₃) in different solvents. The typical semilog plots in Figure 1 illustrate the influence of O₂ and N₂ atmospheres, *n*-Bu₄NI, and [(cod)Ir(phen)]ClO₄ on reaction 1. k_{obsd} values, determined from the linear parts of the curves (Figure 1), are listed in Tables II and III.

The plots in Figure 1 exhibit induction periods typical of autocatalysis, which can be depicted by the parallel reactions 2 and 3, where the relative rate will determine the length of the induction period.

$$A \rightleftharpoons B + C \tag{2}$$

$$A + C \rightleftharpoons D + C \tag{3}$$

As mentioned earlier, it was previously found that the cistrans isomerization reaction 1 are catalyzed³ by phosphine (L = PMe₂Ph, PEt₃; X = Cl, Br, I) and by iodide (L = PMe₂Ph, PEt₃; X = I). Dissociation of iodide or phosphine from PtI₂L₂ could therefore give rise to reactions 2 and 3 (A = *cis*- or *trans*-PtI₂L₂, C = I⁻ or L, D = *trans*- or *cis*-PtI₂L₂) and consequently an induction period.

From Figure 1 and Tables II and III it is clear that addition of $n-Bu_4NI$ to the reaction solution has no effect on either the reaction rate or the induction period, ruling out autocatalysis by iodide ions. On addition of catalytic amounts of PEt₃ or

Table III. Effect of $[(cod)Ir(phen)]^{+,a}[I^{-}],^{b}$ and Solvent on the Observed Rate Constants^c for the Cis-Trans PtI₂L₃ Isomerization under an N₂ Atmosphere

solvent	L	substrate isomer	temp, °C	added species	$\frac{10^{-3}k_{obsd}}{s^{-1}}$
Me, SO	PMe, Ph	cis	50		10.0
-	-			[(cod)Ir(phen)] ⁺	0.92 ^e
				I-	11.8 ¹
		trans	50		8.41
				[(cod)Ir(phen)]*	1.65 ^e
				I-	9.12 ⁷
	PEt ₃	cis	50		very slow
		trans	50		very slow
CH ₃ CN	PMe ₂ Ph	trans	50		6.66
				[(cod)Ir(phen)] ⁺	1.11^{e}
				I-	9.12 ^f
		cis	50		OD change
					too small
	PEt ₃	cis	50		very slow
		trans	50		very slow
benzene	PEt ₃	cis	36		1.44 ^d
	PMe, Ph	cis	30		fast ^d
toluene	PEt,	cis	36		0.72 ^d
	PMe ₂ Ph	cis	30		5.78 ^d

^a Less than stoichiometric amounts. ^b More than stoichiometric amounts. ^c Calculated from the linear part of the plots in Figure 1. ^d The cis complexes were dissolved in a few drops of CH_2Cl_2 before solvent was added. *n*-Bu₄NI is insoluble in these solvents while [(cod)Ir(phen)]ClO₄ is insoluble in benzene. ^e Induction period lengthens. ^f No effect on the induction period.

PMe₂Ph which are known to catalyze reaction 1 ($L = PEt_3$ or PMe₂Ph, respectively) no induction period was observed.³ Furthermore, addition of more or less stoichiometric amounts of [(cod)Ir(phen)]ClO₄ retards the reaction and lengthens the induction period. Since [(cod)Ir(phen)]ClO₄ binds phosphine strongly,⁵ it acts as a phosphine "scavenger". The above data support phosphine dissociation from PtI₂L₂ followed by phosphine catalysis as the most viable mechanism for spontaneous cis-trans isomerization of PtX₂L₂.

Phosphine dissociation from PtI_2L_2 may be achieved in a number of ways.

(i) PtI_2L_2 Dissociation to a Three-Coordinate Species (Eq 4). First, this three-coordinate trigonal intermediate will most

$$PtI_2L_2 \rightleftharpoons PtI_2L + L \rightleftharpoons PtI_2L_2 \tag{4}$$

probably be very reactive and would be expected to pick up free phosphine rapidly to form the product. Since reaction scheme 4 entails two consecutive reactions, an induction period will not materialize. Second, three-coordinate Pt(II) and Pd(II) species have so far not been detected. Such an intermediate (PtRL₂) has been postulated for the spontaneous cis-trans isomerization of PtRXL₂, but, as was mentioned earlier, this was later found to be the solvent species PtX-(MeOH)L₂.⁴

(ii) Substitution of Phosphine by Solvent. If this were the mechanistic pathway, then no induction period or reaction would be expected in the noncoordinating solvents benzene and toluene, which is not the case.

(iii) Dimer Formation. It was recently found that prolonged photolysis of a cis-trans mixture of $PdCl_2(P-n-Pr_3)_2$ yielded high concentrations of the dimer $Pd_2Cl_4(P-n-Pr_3)_2$ and $P-n-Pr_3$.⁶ It is therefore feasible that both *cis*- and *trans*-PtI₂L₂ could form a dimeric (or even polymeric) species in the same manner, but in low concentrations since a NMR study of equilibrium 1 did not reveal any dimer (or polymer) species.³

^{(4) (}a) van Eldik, R.; Palmer, D. A.; Kelm, H. Inorg. Chem. 1979, 18, 572 and references therein. (b) Kelm, H.; Louw, W. J.; Palmer, D. A. Ibid. 1980, 19, 843. (c) Louw, W. J.; van Eldik, R.; Kelm, H. Ibid. 1980, 19, 2878.

⁽⁵⁾ Mestroni, G.; Camus, A.; Zassinovich, G. J. Organomet. Chem. 1974, 73, 119.

⁽⁶⁾ Cusumano, M.; Gugliemo, G.; Ricevuto, V.; Traverso, O.; Kemp, T. J. J. Chem. Soc., Chem. Commun. 1979, 775.

Attempts to isolate the dimer were unsuccessful.

The most probable mechanism for the spontaneous cis-trans isomerization of PtX_2L_2 therefore seems to be

$$2 \operatorname{cis-} \operatorname{or} \operatorname{trans-Pt} X_2 L_2 \rightleftharpoons \operatorname{Pt}_2 X_4 L_2 + 2L \qquad (5)$$

cis- or trans-PtX₂L₂ + L
$$\stackrel{\xrightarrow{}}{\underset{k_{+}}{\leftarrow}}$$
 trans- or cis-PtX₂L₂ + L (6)

Reaction 6 may proceed via either pseudorotation or consecutive displacement.³ The observed reaction rate for the isomerization step (reaction 6) is thus a function of [L].³ The induction period can be attributed to phosphine generation via reaction 5 and will exist until [L] reaches a stage where reaction 6 becomes much faster than reaction 5. Since phosphine acts as a catalyst, reaction 6 will be a pseudo-first-order reaction, and this explains why the semilog curves in Figure 1 become linear.

The rate law for reaction 6^3 (solvent = DMF, Me₂SO, CH₃CN) (see eq 7) predicts that the k_{obsd} values found for

$$k_{\text{obsd}} = (k_i + k_{-i})[L] \tag{7}$$

the cis and trans substrates should be identical and that the rate should be first order in [complex]. From Tables II and III it can be seen that these k_{obsd} values are in fact comparable and independent of [complex]. For the solvents benzene and toluene $k_{-i} = 0$. Unfortunately [L] is not known, and the k_i values are thus not obtainable. The fact that reaction 6 is slower under an O2 atmosphere can be attributed to freephosphine oxygenation.

From the study of the photolysis of the cis-trans mixture of $PdCl_2(P-n-Pr_3)_{2,6}$ it was not clear whether the isomerization results from the cis or trans isomer. Our present study requires that both isomers dimerize and that the cis isomer dimerizes faster than the trans isomer since the induction period for the trans substrate is longer. On the assumption that a two-step associative dimerization mechanism is operative, it can be shown that the trans dimer will be the product for both the cis and trans substrates.

The rate of the isomerization step (reaction 6) decreases with the polarity of the solvent (benzene > toluene > CH_3CN $\sim Me_2SO > DMF$) not only because this reaction is faster in nonpolar solvents but also most probably due to enhanced dimer formation and thus phosphine generation in nonpolar solvents, as is the case in the $Ir(I)^7$ and $Rh(I)^8$ systems.

Reaction 1 (X = I, L = PEt₃) in methanol exhibits no induction period.³ This can be explained by the relative high polarity of the solvent preventing dimer formation.

Registry No. cis-PtI₂(PEt₃)₂, 35084-99-2; trans-PtI₂(PEt₃)₂, 15636-79-0; cis-PtI₂(PMe₂Ph)₂, 41119-52-2; trans-PtI₂(PMe₂Ph)₂, 41119-53-3; [(cod)Ir(phen)]+, 48195-12-6.

Louw, W. J.; Hepner, C. E. Inorg. Chem. 1980, 19, 7. (8) Robb, W.; Nicholson, C. G. S. Afr. J. Chem. 1977, 30, 213, 221.

> Contribution from the Department of Chemistry, Brown University, Providence, Rhode Island 02912

Synthesis and Characterization of Ni(II), Pd(II), and Pt(II) Complexes of $M'OS_3^{2-}$ (M' = Mo, W) and the Mixed-Ligand Compounds [M(M'S₄)(S₂CNEt₂)]

Kenneth P. Callahan* and Edward J. Cichon

Received August 1, 1980

A number of studies on the complexes formed by $M'X_4^{2-}$ ions (M' = Mo, W; X = O, S, Se, or a mixture of them) with

* To whom correspondence should be addressed at Occidental Research Corp., Irvine, CA 92713.

Figure 1. Possible structures of $M(M'OS_3)_2^{2-}$ complexes: A, cis isomer; B, trans isomer.

Figure 2. Proposed structure of $[M(S_2CNEt_2)(M'S_4)]^-$ complexes, where M = Ni or Pd and M' = Mo or W. Ethyl groups are represented by single carbon atoms.

first-row transition-metal ions have been published in the last few years.¹⁻³ As these materials involve three or four transition elements bound to each other through sulfur bridges, they have become interesting to groups studying metal-metal bonding and the effects of bridging ligands on such interactions, especially those between different transition metals.

We have previously reported a study of the Ni(II), Pd(II), and Pt(II) complexes of MoS_4^{2-} and $WS_4^{2-4,5}$ and shown that their electrochemical behavior corresponds to sequential reduction localized at the central d⁸ M(II) metal, with little influence on the part of the $M'S_4^{2-}$ ligands. Here we report the synthesis and characterization of the monooxo analogues of these species $M(M'OS_3)_2^{2-}$ and the mixed-ligand complexes $[M(M'S_4)(S_2CNEt_2)]^{-}$. The electrochemical properties of these materials will be discussed in a subsequent paper.⁶

Results and Discussion

I. Synthesis and Characterization of M(M'OS₃)₂²⁻ Complexes. As earlier work had shown^{4,5} a mixed CH_3CN-H_2O solvent system to be beneficial in the preparation of d⁸ metal complexes of $M'S_4^{2-}$, we used this route to prepare the Ni(II) and Pd(II) complexes of the M'OS₃²⁻ ions, as shown in eq 1.

$$M(II) + 2M'OS_3^{2-} \rightarrow M(M'OS_3)_2^{2-}$$
(1)

The dianionic products were isolated as tetraalkylammonium

- A. Müller, E. Ahlborn, and H.-H. Heinsen, Z. Anorg. Allg. Chem., 386, (2) 102 (1971).
- E. Diemann and A. Müller, Coord. Chem. Rev., 10, 79 (1973). K. P. Callahan, and P. A. Piliero, J. Chem. Soc., Chem. Commun., 13 (4) (1979).
- K. P. Callahan and P. A. Piliero, *Inorg. Chem.* 19, 2619 (1980). K. P. Callahan and E. J. Cichon, manuscript in preparation.

0020-1669/81/1320-1941\$01.25/0 © 1981 American Chemical Society

A. Müller and E. Diemann, Chem. Commun., 65 (1971). (1)